

Using ArcGIS for Statewide Geosciences Applications

Visualizing, Managing, and Analyzing Spatial Data Related to Geological Hazards and Resources

Mike Chenevey

Geology Symposium 2007

May 10 • Sacramento

GIS Background

"Geographic Information Systems," in the digital sense, have been around for over 50 years

ESRI, largest GIS software company in the world, was founded in 1969 by Jack & Laura Dangermond

Today we have over 1 Million users worldwide

GIS Background

An enormous range of GIS users exist:

Banking and finance Engineering

Large retailers Government

Media & press Transportation

Real estate Utilities

Defense Natural resources

Education

How is a GIS used?

- Visualization
- Analysis

Spatial data management

Trimble

Uses of Spatial Data - Geology

1. Locate and analyze data related to geologic hazards:

Fault structures

Slope hazards

Areas of environmental

protection

Uses of Spatial Data - Geology

- 2. Locate and analyze geologic resources:
- Rock and mineral occurrences
- Areas of mining activity (both historical and current)

Uses of Spatial Data - Geology

- 3. Collaborate with:
- Other agencies (local, state, federal)
- Professional consultants
- Private persons

Involves: data sharing, quality control, and promotion of knowledge transfer

Purpose of Spatial Data Visualization, Analysis, Management

Improve the quality of decision-making:

- Health and safety
- Economy
- Business decisions

Functions Accomplished with ArcGIS

ArcGIS can be used as an end-to-end solution for locating, collecting, storing, analyzing, and visualizing geologic data

Field Data Collection

Back-in-Office Tasks

ArcGIS desktop-based software provides powerful tools for managing, analyzing, and visualizing complex geologic data

Data Input Ability

- Manual or automated digitizing
- Load data directly from AutoCAD, Microstation
- Directly load tables or spreadsheets

• Insert digital images, attributes

Spatial Analysis

0

0

60

60

158 A

160 FC

3042 Polygon

3043 Polygon

508 38F

508 38F

Data Distribution

- Distribute data on a <u>local</u> <u>PC</u>, or <u>multiple PC's</u> (LAN, WAN)
- Distribute over the Web for access anywhere

Output Functions

Geologic data can be printed and distributed using advanced cartographic techniques and standardized symbology

Server-based Management

Server-based spatial data provides the means to manage and distribute <u>standardized data</u> and <u>analysis tools</u> over networks and the Internet

Data Modeling for Sharing, Consistency

Geologic map data models, e.g., the <u>North American</u> Geologic Data Model (NADM) provide <u>consistent data</u> <u>structure</u> and <u>attributes</u>

ArcGIS Explorer 9.2

- Lightweight and free desktop client
- 2-D and 3-D visualization and analysis
- <u>Simple, powerful spatial functionality</u> for non-technical endusers, managers, and industry leaders

ArcGIS Explorer 9.2 http://arcgisonline.esri.com/

Summary Slide – ArcGIS

ArcGIS tools are designed to complete an enterprise system, allowing a wide variety of users access to consistent data wherever they work in the world

Thank You

Contact:
Mike Chenevey
mchenevey@esri.com

